Reteaching 7-6

OBJECTIVE: Using the quadratic formula to solve quadratic equations

MATERIALS: Calculator

Rewrite in standard form.

← Use the quadratic formula.

Solve.

(a = 1, b = 5, c = -14)

Substitute 1 for a, 5 for b, and -14 for c.

Write a, b, c above the appropriate numbers.

- The quadratic formula can be used to solve any quadratic equation.
- When the quadratic equation is in standard form $(ax^2 + bx + c = 0)$ where $a \neq 0$, the solutions are found by the formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$

Example

 $Solve x^2 + 5x = 14.$

$$x^2 + 5x = 14$$

$$x^2 + 5x - 14 = 0$$

$$x^2 + 5x - 14 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

$$x = \frac{-5 \pm \sqrt{5^2 - 4(1)(-14)}}{2(1)}$$

$$x = \frac{-5 \pm \sqrt{25 - 56}}{2}$$

$$x = \frac{-5 \pm \sqrt{81}}{2}$$

$$x = \frac{-5 \pm 9}{2}$$

$$x = \frac{-5+9}{2}$$
 or $x = \frac{-5-9}{2}$ Write two solutions.

$$x = 2 \qquad x = -7$$

The solutions are 2 or -7.

Activity

Solve using the quadratic formula. Round solutions to the nearest hundredth when necessary.

$$1. \ 3x^2 + 7x + 2 = 0$$

1.
$$3x^2 + /x + 2 = 0$$

3.
$$4y^2 = 3 - 5y$$

$$2. x^2 + 3x + 2 = 0$$

4.
$$2 = 11z - 5z^2$$

Reteaching 7-7

OBJECTIVE: Using the discriminant to find the number of solutions of a quadratic equation

MATERIALS: Calculator

In the quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$, the discriminant is the expression under the radical sign, $b^2 - 4ac$. The discriminant determines how many solutions, or x-intercepts, a quadratic equation has.

- If the discriminant is positive, there are two solutions.
- If the discriminant is 0, there is one solution.
- · If the discriminant is negative, there are no solutions.

Example

Find the value of the discriminant and the number of solutions for each quadratic equation.

$ax^2 + bx + c = 0$	Discriminant $(b^2 - 4ac)$	Number of Solutions	Number of x-intercepts
a. $x^2 + 2x + 3 = 0$	$(2)^2 - 4(1)(3) = -8$	none	none
b. $x^2 - 2x + 1 = 0$	$(-2)^2 - 4(1)(1) = 0$	one	one
c. $x^2 - 2x - 2 = 0$	$(-2)^2 - 4(1)(-2) = 12$	two	two

Activity

Find the value of the discriminant and the number of solutions for each quadratic equation.

$ax^2 + bx + c = 0$	Discriminant (b² – 4ac)	Number of Solutions	Number of x-intercepts
$1. \ 2x^2 + 3x + 3 = 0$	$(3)^2 - 4(2)(3) =$		
$2. x^2 - 2x + 4 = 0$			
$3. \ 3x^2 - 6x + 3 = 0$			

Additional Exercises

Find the value of the discriminant and the number of solutions of each equation.

$$4. -2x^2 + 4x - 2 = 0$$

4.
$$-2x^2 + 4x - 2 = 0$$
 5. $-\frac{1}{2}x^2 + x + 3 = 0$ **6.** $5x^2 - 2x + 3 = 0$

6.
$$5x^2 - 2x + 3 = 0$$