6-4

Skills Practice Solving Compound Inequalities

Graph the solution set of each compound inequality.

1. $b > 3$ or $b \le 0$	2. $z \leq 3$ and $z \geq -2$
-4 -3 -2 -1 0 1 2 3 4	-4 -3 -2 -1 0 1 2 3 4
3. $k > 1$ and $k > 5$	4. $y < -1$ or $y \ge 1$
	-4 -3 -2 -1 0 1 2 3 4

Write a compound inequality for each graph.

5.	$-4 - 3 - 2 - 1 \ 0 \ 1 \ 2 \ 3 \ 4$	6. \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow \leftarrow
7.	<++ ↔ + + ↔ + + + → -4 -3 -2 -1 0 1 2 3 4	8. \leftarrow + + + \leftarrow + + + \leftarrow + + + + + + + + + + + + + + + + + + +

Solve each compound inequality. Then graph the solution set.

9. $m + 3 \ge 5$ and $m + 3 < 7$	10. $y - 5 < -4$ or $y - 5 \ge 1$
-2 −1 0 1 2 3 4 5 6	-2 −1 0 1 2 3 4 5 6
11. $4 < f + 6$ and $f + 6 < 5$	12. $w + 3 \le 0$ or $w + 7 \ge 9$
-4 -3 -2 -1 0 1 2 3 4	-4 -3 -2 -1 0 1 2 3 4
13. $-6 < b - 4 < 2$	14. $p - 2 \le -2$ or $p - 2 > 1$
-2 -1 0 1 2 3 4 5 6	-4 -3 -2 -1 0 1 2 3 4

Define a variable, write an inequality, and solve each problem. Then check your solution.

15. A number plus one is greater than negative five and less than three.

16. A number decreased by two is at most four or at least nine.

17. The sum of a number and three is no more than eight or is more than twelve.