- REFERENCE PAGE

Use the information below to answer questions on the Alabama High School Graduation Exam.

Some Abbreviations Used in Formulas

$\mathbf{b}_{1}, \mathbf{b}_{2}=$ bases of a trapezoid	A = area	S.A. = surface area
$\mathbf{b}^{\mathbf{2}}=$ base of a polygon	C = circumference	V = volume
$\mathbf{h}=$ height or altitude	$\mathbf{r}=$ radius	$\mathbf{B}=$ area of the base
$\mathbf{I}=$ length	d = diameter	\mathbf{S} = sum of interior angles of
$\mathbf{w}=$ width	$\pi=3.14$	a convex polygon
	$\mathbf{P}=$ perimeter	$\mathrm{n}=$ number of sides of
symbol for a right angle	D = distance	a convex polygon
$\mathrm{m} \angle=$ the measure of an angle	$\begin{aligned} & \mathbf{M}=\text { midpoint } \\ & \mathbf{m}=\text { slope } \end{aligned}$	

Formulas

Triangle: $\mathbf{A}=\frac{1}{2} \mathbf{b h}$
Parallelogram: $\mathbf{A}=\mathbf{b h}$
Rectangle: $\mathbf{A}=\mathbf{I w}$
Trapezoid: $\mathbf{A}=\frac{1}{2} \mathbf{h}\left(\mathbf{b}_{1}+\mathbf{b}_{2}\right)$
Circle: $\mathbf{C}=\pi \mathbf{d}$
$\mathbf{C}=2 \pi \mathrm{r}$
$\mathrm{A}=\pi \mathrm{r}^{2}$
Distance $=$ rate \bullet time
Interest $=$ principal \cdot rate \cdot time

Distance Formula: $\mathbf{D}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Midpoint Formula: $\mathbf{M}=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
Slope Formula: $\boldsymbol{m}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Sum of Measures of Interior Angles
of a Convex Polygon: S = 180(n-2)
Quadratic Formula: $x=\frac{-b \pm \sqrt{\mathbf{b}^{2}-4 \mathbf{a c}}}{2 a}$
Pythagorean Theorem: $\mathbf{c}^{\mathbf{2}}=\mathbf{a}^{\mathbf{2}}+\mathbf{b}^{\mathbf{2}}$

	Surface Area	Volume
Rectangular Prism	S.A. $=\mathbf{P h}+2 \mathbf{B}$ or S.A. $=2(\mathbf{w h}+\mathbf{I h}+\mathbf{I w})$	$\mathbf{V}=\mathbf{B h}$ or $\mathbf{V}=\mathbf{I w h}$
Cylinder	S.A. $=2 \pi \mathbf{r h}+2 \pi \mathbf{r}^{2}$	$\mathbf{V}=\pi \mathbf{r}^{2} \mathbf{h}$

Forms of Equations

Standard form of an equation of a line: $\mathrm{Ax}+\mathrm{By}=\mathrm{C}$
Slope-intercept form of an equation of a line: $\mathrm{y}=\boldsymbol{m} \mathrm{x}+\mathrm{b}$
Point-slope form of an equation of a line: $y-y_{1}=\mathbf{m}\left(x-x_{1}\right)$

