Reteaching 10-1 Patterns and Sequences

A sequence is a set of numbers that follows a pattern.

In an **arithmetic sequence**, each term is found by *adding* a fixed number to the previous term. The number that you add is called the **common difference**.

Find the next three terms in the arithmetic sequence $8, 5, 2, -1, -4, \ldots$

- The common difference is 5 8 = -3.
- Add 3 for the next three terms.

$$-4 + (-3) = -7$$

$$-7 + (-3) = -10$$

$$-10 + (-3) = -13$$

The next three terms are -7, -10, -13.

In a **geometric sequence**, each term is found by *multiplying* the previous term by a fixed number. The number that you multiply by is called the **common ratio**.

Find the next three terms in the geometric sequence: 2, 6, 18, 54,

- The common ratio is $\frac{18}{6} = 3$.
- Multiply by 3 for the next three terms.

$$54\times3=162$$

$$162 \times 3 = 486$$

$$486 \times 3 = 1,458$$

The next three terms are 162, 468, 1,458.

The sequence: 1, 4, 9, 16, . . . is neither arithmetic nor geometric.

Its pattern is $1^2, 2^2, 3^2, 4^2, \ldots$

Its next three terms are 5^2 , 6^2 , 7^2 , or 25, 36, 49.

Identify the common difference in each arithmetic sequence.

3.
$$-12$$
, -4 , 4 , 12 , . . .

Identify the common ratio in each geometric sequence.

5.
$$1, \frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \dots$$

Identify each sequence as arithmetic, geometric, or neither. Find the next three terms of the sequence.

7. 4, 2, 1,
$$\frac{1}{2}$$
, . . .

9.
$$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots$$