Exploring Exponential and Logarithmic Functions

Real Exponents and Exponential Functions

Expon	ential	Function	

An equation of the form $v = a \cdot b^{\wedge} x$, where $a \neq 0, b > 0$, and $b \neq 1$, is called an exponential function with base b.

Property of Equality for Exponential Functions	x x
	Suppose b is a positive number other than 1. Then $b = 1$ if and only if $x = x = 2$.

$$2^6 = 2^3n + 1$$

$$6 = 3n + 1$$

$$\frac{5}{3}=n$$

Logarithms and Logarithmic Functions

logarithm -The exponent to which a fixed base must be raised in order to obtain a given number.

Suppose p > 0 and $b \ne 1$. For n > 0, there is a number p such that $\log b \ n = p$ if an only if $b^{n} = n$.

logarithmic function - An equation of the form $v = \log_b x$, where b > 0, and $b \ne 1$.

Ex. $log_5 125 = 5$

Property of Equality for Logarithmic Functions	Suppose $b > 0$ and $b \ne 1$. Then $\log b x = \log b x^2$ if an only if $x^1 = x^2$.

artics of Logarithms

Product Property of Logarithms	For all positive numbers m , n , and b , where $b \neq 1$, $\log_b mn = \log_b m + \log_b n$.
Quotient Property of Logarithms	For all positive numbers m , n , and b , where $b \neq 1$, $\log b \frac{m}{n} = \log_b m - \log_b n$.
Power Property of Logarithms	For any real number p and positive numbers m and b , where $b \neq 1$, $\log_b m^p = p \cdot \log_b m$.

Common Logarithms

common logarithms - Logarithms to the base 10. mantissa - The logarithm of a number between 1 and 10.

characteristic - The integer used to express a base 10 logarithm as the sum of and integer and a positive decimal.

antilogarithm - If $\log x = a$, then x = antilog a.

Natural Logarithms

exponential growth - When a quantity increases exponentially.

natural logarithms - Logarithms to the base e. (e is approximately 2.71828182846)

Solving Exponential Equations

exponential growth rate - The positive constant k in the growth equation $P(t) = P0e^{kt}$.

exponential equations - An equation in which variables occur in exponents.

Change of Base Formula	For all possible numbers a, b, and n, where $a \neq 1$ and $b \neq 1$, $\log_a n = \frac{\log_b n}{n}$
	log <i>b</i> a

Growth and Decay

general formula for growth and decay - The formula is $y = ne^{\lambda}kt$, where y is the final amount, n is the initial amount, k is a constant, and t is the time.

$$y = ne^{kt}$$

$$2 = 1e^k(20)$$

$$2 = e^2 20k$$

$$\ln 2 = \ln e^2 20k$$

Ex.
$$\ln 2 = 20k \ln e$$

$$mz = 20k \text{ me}$$

$$\ln 2 = 20k$$

$$\frac{\ln 2}{20} = k$$

$$0.0347 \approx k$$

A rea of a Triangle - The area of a triangle having vertices at (a,b), (c,d), and (e,f) is A, where $A = \frac{1}{2}$ $\begin{bmatrix} a & b & 1 \\ c & d & 1 \\ e & f & 1 \end{bmatrix}$

Hero's Theorem - If s = semi-perimeter (perimeter divided by 2), and a, b, and c represent sides, then $A = \sqrt{s(s-a)(s-b)(s-c)}$ units^2

2 (2) Xprom of two sions XS int of enclosed Arigh)