Sequences and Series

Arithmetic Sequences

Sequence- A list of numbers in a specific order

Term- Each number in a sequence

Arithmetic Sequence- A sequence in which each term after the first is found by adding a constant, called the common difference d to the previous term.

Common Difference- The number added to find the next term of an arithmetic sequence.

The formula for finding the nth term of an arithmetic sequence is $a_n = a_1 + (n-1)d$ Ex: Find n if $a_1 = 1000$, d = 97, and $a_n = 2649$

Arithmetic Series

Series- The indicated sum of the terms of a sequence

Arithmetic Series- The indicated sum of the terms of an arithmetic sequence

Write the equation $\rightarrow a_n = a_1 + (n-1)d$

Set up the equation $\rightarrow 2649 = 1000 + (n-1)97$

Solve for $n \rightarrow$ 1649 = 97n - 97

1746 = 97nn = 18

Sum of an Arithmetic Series- $S_n = (n/2)(a_1 + a_n)$ and $S_n = (n/2)[2a_1 + (n-1)d]$ Finding the sum of Arithmetic Series \rightarrow Find S_n if $a_1 = 70$, $d_2 = 21$, and $d_3 = 40$

Sigma or Summation Notation-

 $S_n = (n/2)[2a_1 + (n-1)d]$ $S_{40} = (40/2)[2(70) + (40-1)(-21)]$

 $S_{40} = 20(140 - 819)$ $S_{40} = 20(-679) \rightarrow -13580$

Index of Summation- The variable defined below the in sigma notation

Example of using Sigma Notation: Find the sum of

(2k + 5)Sn = (n/2)(a1 + an)

N = 5, a1 = 11

an = a5 = 2(7) + 5 or 19

 $Sn = (5/2)(11 + 19) \rightarrow 75$

Geometric Sequences

Geometric Sequence A sequence in which each term after the first is found by multiplying the previous term by a constant called the common ratio, r.

Common Ratio- The number by which each term, after the first, in a geometric sequence is multiplied to obtain the next term

Geometric means- The terms between any two nonconsecutive terms in a geometric sequence.

The Formula for the nth term of a Geometric Sequence is $a_n = (a_{n-1})(r)$ or $a_n = (a_1)(r^{n-1})$ Ex: Find the 5 term of a geometric sequence where $a_1 = 3$, r = 2

 $a_5 = (3)(2^{5-1})$ $= (3)(16) \rightarrow 48$

Geometric Series

Geometric Series- The indicated sum of the terms of a geometric sequence

The Formula for the Sum of a Geometric Series- $S_n = \underline{a_1 - a_1 r^n}$ or $S_n = \underline{a_1 (1 - r^n)}$ or $S_n = \underline{a_1 - a_n r}$ 1 - r

Ex: Find the sum of the geometric series where $a_1 = 5$ and r = -2

 $Sn = a1 - a1m \rightarrow Sn = 5 - 5(-2)6$

Infinite Geometric Series

Partial Sum- In an infinite series, S_n is called a partial sum because it is the sum of a certain number of terms and not the sum of the entire series Sum of an Infinite Geometric Series- $S = \underline{a_1}$ iff -1 < r < 1 Ex: Find sum of infinite series if it exists: 1 - 3 + 9 - 27 $a_1 = 1$ and $a_2 = -3$ so $r = \overline{1}$

Since |-3| > 1, no sum exists

Recursion and Special Sequences

Recursive Formula- A recursive formula has the values of the first term(s), and a recursion equation that shows how to find each term from the term(s) before

Sequence	Sequence Type	Recursive Formula
9, 13, 17,	Arithmetic	$a_{n+1} = a_n + 4, a_1 = 9, n \ge 1$
7, 21, 63,	Geometric	$An+1 = an(3), a1 = 7, n \ge 1$
1, 1, 2, 3, 5, 8,	Fibonacci	$a_n = a_{n-1} + a_{n-2}, a_1 = 1, a_2 = 1, n \ge 3$

Find the first three terms of the sequence where $a_1 = 5 a_{n+1} = 2a_n + 3$, n > 1

 $a_{1} = 3$ $a_{1+1} = 2a_1 + 3$ $a_2 = 2(5) + 3 \rightarrow 13$ $a_{2+1} = 2a_2 + 3$

The first three terms are 3, 13, and 29

Fractal- A geometric figure that has self-similarity, is created using a recursive process, and is infinite in structure.

Self-Similarity- A characteristic of an object in which replicas of an entire shape or object are embedded over and over again inside the object in different sizes

Stage 2

The Binomial Theorem

Pascal's Triangle- The pyramid formation of the coefficients of binomial expansion

Binomial Theorem-
$$(a+b)^n = 1a^nb^0 + \underline{n(a^{n-1}b^1)} + \underline{n(n-1)}a^{n-2}b^2 + ... + 1a^0b^n$$

Factorials- If n is a positive integer, the expression n! is defined as $n! = n(n-1)(n-2)(n-3) \dots 2 * 1$. By definition 0! = 1 Ex: 4! = 4 * 3 * 2 * 1 = 24You can express the Binomial Theorem in sigma notation also→

Ex: Find the seventh term of $(p + q)^{11}$

$$\rightarrow (462)p^5q^6$$