Exploring Polynomials and Radical Expressions

Monomials

Scientific Notation- A way of expressing extremely large or small numbers as $a \times 10^n$ where $1 \le a \le 10$ and n is an integer

Ex: $4 \times 10^8 = 400,000,000$ $3 \times 10^{-6} = .000003$

Monomial- an expression that is a number, variable, or product of a number and a variable. Ex: $4a^2b$

Constants- monomials with no variables

Coefficient-numerical factor of a monomial

Degree of a monomial- sum of all the monomials variables' exponents.

Ex: $3x^2y^3$ 2+3=5 A 5 degree monomial

Power-an expression in the form of yⁿ

Simplify- rewrite an expression without parentheses or negative exponents

Exponent Rules	
Negative Exponent Rule	If $a \neq 0_{a^{-n}} = \frac{1}{a^n}$ and $\frac{1}{a^{-n}} = a^n$
Multiplying Powers	$\mathbf{a^{m}} \star \mathbf{a^{n}} = \mathbf{a^{m+n}}$
Dividing Powers	If a≠0 <u>a^m</u> a ^{m-n}
Power of a Power	$(a^{m})^{n} = a^{m^{n}n}$
Power of a Product	$(ab)^m = a^m * b^m$
Power of a Quotient	$(a/b)^n = a^n/b^n$ and $(a/b)^{-n} = (b/a)^n$ or b^n/a^n

Polynomials

Like terms- two monomials that are the same or differ only by their coefficients

Polynomial- a monomial or a sum of monomials

Terms- monomials that make up a polynomial

Binomial- a polynomial with 2 terms

Trinomial- a polynomial with 3 terms

Degree of a polynomial- The degree of the monomial with the highest degree

Foil Method of multiplying polynomails:

First Term

Outer Term

Inner Term

Last Term

Dividing Polynomials

Synthetic Division-a simpler method than long division used to divide a polynomial by a binomial

Step 1: Write terms of polynomial so degrees are in descending order. Then write the coefficients as shown.

Step 2: Write constant of r of the divisor x-r to the left.

Step 3: Bring first coefficient down as shown

Step 4: Multiply first coefficient by r. Write product under second coefficient. Add product and second coefficient. 31 6 - 19 1 6

Step 5: Multiply sum by r. Write product under next coefficient and add

Step 6: Repeat Step 5 for as many coefficients as there are. Then write the remainder.

Step 7: Rewrite equation with one degree less for each coefficient.

$$6x^2 - x - 2$$

Fastaring

Factor- a number, variable, monomial, or polynomial multiplied to obtain a product.

	Any Number of Terms
GCF	ab+ac+ad= a(b+c+d)
	Two Terms
Difference of Two	$a^2-b^2=(a+b)(a-b)$
Squares	
Sum of Two Cubes	$a^3+b^3=(a+b)(a^2-ab+b^2)$
Difference of Two Cubes	$a^3-b^3=(a-b)(a^2+ab+b^2)$
	Three Terms
Perfect Square	$a^2+2ab+b^2=(a+b)^2$
Trinomials	
	$a^2-2ab+b^2=(a-b)^2$
General Trinomials	$acx^2 + (ad+bc)x + bd = (ax+b)(cx+d)$
	Four or More Terms
Grouping	ra+rb+sa+sb=r(a+b)+s(a+b)=(r+s)(a+b)

Factoring Steps

- 1. Find GCF
- 2. Look for a pattern
 (difference of 2 squares
 (perfect square trinomials
 (sum or difference of 2 cubes
- 3. If a polynomial is a square trinomial use British Method
- 4. If \geq 4 terms try grouping

British Method

Look for 2 numbers whose product is ac and sum is b Ex:

Roots of Real Numbers

Square Root- For any real numbers a and b, if $a^2 = b$, then a is a square root of b.

Christoff Rudolff- Introduced the radical sign in his algebra book $Die\ Cross$. He probably chose it because it resembled an r, the first letter in radix, which means root.

Definition of nth root- For any real numbers a and b, and any positive integer n, if $a^n = b$, then a is an nth root of b.

Principal Root- The nonnegative root. If there is a negative root but no nonnegative root, the principal root is the negative root.

Radical Expressions and Rational Exponents

Radical Properties

Product Property- $\sqrt[4]{a}$ by when a and b are both nonnegative and n>1

Quotient Property- if b≠0 and n>1 then $\sqrt[n]{\frac{1}{p}} = \sqrt[n]{\frac{1}{p}}$ Definition of $b^{\frac{1}{p}}$ - if n>1 then $b^{\frac{1}{p}} = \sqrt[n]{\frac{1}{p}}$ except when b<0 and n is even

Definition of Rational Exponents- If b is nonzero and n>1 then $b = \sqrt[m]{b} = \sqrt[n]{b}$ except when b<0 and n is even

Solving Radical Equations and Inequalities

Radical Equations- Equations that contain radical expressions with variables in the radicand

Extraneous Solutions- Solutions that do not satisfy the original equation

Ex: Solve
$$2(7n-1)^{(1/3)} - 4 = 0$$

$$2(7n-1)^{(1/3)}-4=0$$

$$2(7n-1)^{(1/3)} = 4 \rightarrow \text{add 4 to each side}$$

$$(7n-1)^{(1/3)} = 2 \rightarrow$$
 divide by 2 to isolate the cube root

$$[(7n-1)^{(1/3)}]^3 = 2^3 \rightarrow$$
 cube each side to get rid of rational exponent

$$7n - 1 = 8$$

$$7n = 9 \rightarrow n = (9/7)$$
 Now check the equation for extraneous solutions

Check:
$$2(7n-1)^{(1/3)} - 4 = 0$$

 $2[7(9/7) - 1]^{(1/3)} - 4 = 0$
 $2(8)^{(1/3)} - 4 = 0$
 $2(2) - 4 = 0$
 $0 = 0$
The solution is $(9/7)$

Solving Radical Inequalities

- 1. Solve the equation in the radical expression first
- 2. Solve the whole radical equation.
- 3. Check to see if the equation makes sense with a drawing on the number line.

Complex Numbers

Pure imaginary numbers- A complex number of the form bi, where b is real and i is the imaginary unit.

Definition of Pure Imaginary Numbers- $\sqrt{-b2} = \sqrt{b2} * \sqrt{-1}$ or bi

Complex Number- Any number that can be written in the form a + bi, where a and b are real numbers and i is the imaginary unit.

Complex Number- Any number that car
Ex: Simplify
$$\sqrt{-12} = \sqrt{2^2 * \sqrt{3} * \sqrt{-1}}$$

 $= 2 * \sqrt{3} * i$
 $= 2i \sqrt{3}$

Simplifying Expressions Containing Complex Numbers

Complex Conjugates - Complex numbers of the form a + bi and a - bi

Ex: Simplify
$$\frac{8i}{1+3i} = \frac{1+3i}{1+3i} = \frac{1-3i}{1+3i} + \frac{1-3i}{1-3i} + \frac{1-3i}{1-3i} + \frac{1-3i}{1+3i} + \frac$$