Quadratic Functions and Inequalities

Solving Quadratic Equations by Graphing

quadratic function - A function described by an equation that can be written in the form $f(x) = ax^2 + bx + c$, where $a \ne 0$.

leading co-efficient - a quae

quadratic term - ax^2

linear term - bx constant term - c

parabola - the graph of any quadratic function, and the loci of points equidistant from a point (the focus) and a line (the directrix)

axis of symmetry - the line that splits the graph symmetrically in half vertex - the point where the parabola intersects the axis of symmetry zeros - the x-coordinates of the points where the parabola intersects the x-axis

If a > 0, then the parabola opens up.

If a < 0, then the parabola opens down.

quadratic equation - when a quadratic function is set equal to zero

axis of symmetry: x = -3

roots - solutions of a quadratic equation

Solving Quadratic Equations by Factoring

factoring - solving a quadratic equation by using the zero product property

zero product property - For any real numbers a and b, if ab = 0, then either a = 0, b = 0, or both.

Ex.
$$0 = 48t - 16t^2 \rightarrow 0 = 16t(3 - t)$$

Because 16t times 3-t is 0, either 16t or 3-t equals zero. 16t = 0 or 3-t = 0

$$t=0$$
 $t=3$

Completing the Square

Ex. $x^2 - 6x = 40$

1. Find the term that completes the square on the left side.

$$x^2 - 6x + \square = 40 + \square$$

*take one half of b and square it 2. Add the term to both sides

$$x^2 - 6x + 9 = 40 + 9$$

3. Factor

$$(x-3)^2=49$$

4. Take the square root of each side

5. Solve for x and substitute to check.

$$x = 10$$
 and $x = -4$

The Quadratic Formula and the Discriminant

The quadratic formula - The solutions of a quadratic equation of the form $ax^2 + bx + c = 0$, where $a \ne 0$, are given by the following formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The discriminant - $b^2 - 4ac$

Value of $b^2 - 4ac$	Discriminant a perfect square?	Nature of Roots	Nature of related graph
$b^2 - 4ac > 0$	yes	2 real, rational	intersects x-axis twice
$b^2 - 4ac > 0$	no	2 real, irrational	intersects x-axis twice
$b^2 - 4ac < 0$		2 imaginary	does not intersect x-axis
$b^2 - 4ac = 0$		l real	intersects x-axis once

Sum and Product of Roots

If the roots of $ax^2 + bx + c = 0$ with $a \ne 0$ are s_1 and s_2 , then $s_1 + s_2 = -\frac{b}{a}$ and $s_1 \cdot s_2 = \frac{c}{a}$.

Analyzing Graphs of Quadratic Functions

hk form - $y = \alpha(x-h)^2 + k$, where (h, k) is the vertex and the axis of symmetry is at x = h.

a determines which way the graph opens. a is positive \rightarrow graph opens upward. a is negative \rightarrow graph opens downward.

As the value of |a| increases, the graph narrows.

Graphing and Solving Quadratic Inequalities

boundary - a line or curve that separates a graph into two parts

To graph a quadratic inequality:

- 1) Graph the boundary. Determine if it should be solid or dashed (\leq or \geq \rightarrow use a solid line, < or > \rightarrow use a dashed line)
- 2) Test a point in each region
- 3) Shade the region whose ordered pair results in a true inequality

Standard Deviation

standard deviation - a measure of variation that measures how much each value in a set of data differs from the mean.

To find the standard deviation of a set of data:

- 1) Find the mean, \bar{x}
- 2) Find the difference between each value in the set and the mean
- 3) Square each difference
- 4) Find the mean of the squares
- 5) Take the principal square root of this mean

N	X	$(x_n - \overline{x})$	$(x_n - \overline{x})^2$
ì	x_1	$x_1 - \overline{x}$	$(x_1 - x)^2$
2	x_2	$x_2 - \overline{x}$	$(x_2 - x)^2$
3	x_3	$x_3 - \overline{x}$	$(x_3 \cdot x)^2$
4	<i>x</i> ₄	$x_4 - x$	$(x_4 - x)^2$
:	:	:	:

$$\frac{\overline{x}}{x^{2}} = \frac{x_{1} + x_{2} + \dots + x_{n}}{n}$$

$$\frac{y^{2}}{y^{2}} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n}$$

$$SD = \sigma = \sqrt{(x_{n} - \overline{x})^{2}}$$

Approx. 68% of data will be within $\pm 1\sigma$ of x

Approx. 95% of data will be within $\pm 2\sigma$ of x

Approx. 99% of data will be within $\pm 3\sigma$ of x

The Normal Distribution

frequency distribution - shows how data are spread out over the range of values histogram - a bar graph that displays a frequency distribution normal distribution - a data distribution that gives a bell-shaped, symmetrical graph bell curve - a symmetric curve that is the general shape of the graph of a normal distribution skewed distribution - a distribution curve that is not symmetric

The bell curve is also known as the Gaussian curve, because Gauss discovered the curve.