Analyzing Conic Sections

Integration: Geometry (The Distance and Midpoint Formulas)

Distance Formula for Two Point in a Plane

The distance between two points with coordinates (x1, y1) and (x2, y2) is given by $d = \sqrt{(x^2 - x^1)^{x_2} + (y^2 - y^1)^{x_2}}$

	IC 1: 4 (1 2) and (2 2) then the mide into father line accompant has according to a
Midpoint of a line Segment	If a line segment has endpoints at (x1, y2) and (x2, y2), then the midpoint of the line segment has coordinates
	$\left(\frac{x_1+x_2y}{2},\frac{y_1+y_2}{2}\right)$

Parabolas

latus rectum - The line segment through the focus of a parabola and perpendicular to the axis of symmetry.

Information about Parabolas				
form of equation	$y = a(x-h)^2 + k$	$x = a(y-k)^2 + h$		
axis of symmetry	x = h	y = k		
vertex	(h, k)	(h, k)		
focus	$\left(h,k+\frac{1}{4a}\right)$	$\left(h + \frac{1}{4a}, k\right)$		
directrix	$y = k - \frac{1}{4a}$	$x = h - \frac{1}{4a}$		
direction of opening	upward if $a > 0$ downward if $a < 0$	right if $a > 0$ left if $a < 0$		
length of the latus rectum	$\frac{ 1 }{ a }$ units	$\frac{ 1 }{ a }$ units		

Circles

circle - Set of all points in a plane that are equidistant from a given point in the plane called the center.

radius - Any segment whose endpoints are the center and a point on the circle. tangent - A line that intersects a circle in exactly one point is said to be tangent to the circle. Equation of a Circle: The equation of a circle with center (h, k) and radius r units is $(x-h)^2 + (y-k)^2 = r^2$.

Ellipses

ellipse - Set of all points in a plane such that the sum of all distances from the foci is constant.

major axis - The longer of the two line segments that form the axes of symmetry for and ellipse.

minor axis - The shorter of the two line segments that form the axes of symmetry for and ellipse. center of an ellipse - The intersection of the major and minor axes of an ellipse.

Standard Equations of Ellipses with Center at (h, k) - 1. The standard equation of an ellipse with its center at (h, k) and with a horizontal major axis is

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \text{ 2. The standard equation of an ellipse with its center at (h, k) and with a vertical major axis } \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

Hyperbolas

hyperbola - Set of all points in a plane such that the absolute value of the difference of the distance from any point on the hyperbola to two given points, called the foci is constant. center of a hyperbola - The intersection of the conjugate and transverse axes of a hyperbola. asymptotes - Lines that a curve approaches. vertex - The point on each branch of a hyperbola that is nearest the center of the hyperbola.

transverse axis - One of two line segments that form the axes of symmetry for a hyperbola whose endpoints are the vertices of a hyperbola. **conjugate axis** - The line segment that is perpendicular to the transverse axis at the center of a hyperbola and is an axis of symmetry of the hyperbola. **Standard Equations of Hyperbolas with Center at** (h,k) - 1. The equation of a hyperbola with center at (h,k) and with a horizontal transverse axis

is
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$
 2. The equation of a hyperbola with center at (h,k) and with a vertical transverse axis is $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$

Conic Section

Equation of a Conic Section	The equation of a conic section can be written in the form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, where A, B, and C are not all zero.
Ways to determine the type of conic section represented	

Conic Section	Relationship of A and C	
parabola	A = 0 or $C = 0$, but not both.	
circle	A = C	
ellipse	A and C have the same sign and $A \neq C$.	
hyperbola	A and C have opposite signs.	