Rational Expressions

Graphing Rational Functions

rational function - a function that is the ratio of two polynomial expressions. continuity - can be traced with a pencil that never leaves the paper

point discontinuity - a hole in the graph - a break in continuity

Ex.
$$\frac{x^2 - 16}{x - 4}$$

 $f(x) = \frac{p(x)}{q(x)}$ p(x) and q(x) are polynomial functions. $q(x) \neq 0$

Direct, Inverse, and Joint Variation

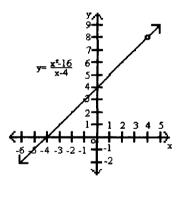
direct variation - v varies directly as x if there is some nonzero constant k such that v = kx. k is called the constant of variation. As x increases, v increases and decreases

inverse variation - y varies inversely as x if there is some nonzero constant k such

that
$$xy = k$$
 or $y = \frac{k}{x}$.

joint variation - y varies jointly as x and z if there is some number k such that v = kxz, where $x \neq 0$ and $z \neq 0$.

x	y	
-6	y -2	
-5 -4 -3 -2] -1	
-4	0	
-3	1	
-2	2 3 4 5 6	
-1	3	
0	4	
1	5	
2	6	
3	7	
2 3 4 5	undef	
5	8	



Multiplying and Dividing Rational Expressions

rational algebraic expression - an algebraic expression that can be expressed as the quotient of two polynomials where the denominator does not equal zero.

For all rational expressions $\frac{a}{b}$ and $\frac{c}{d}$, $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$, if $b \neq 0$ and $d \neq 0$, and $\frac{a}{b} \cdot \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$, if $b \neq 0$, $c \neq 0$, and $d \neq 0$.

Ex. Simplify
$$\frac{8x^2y}{a^3b} \div \frac{4x^3y^2}{a^2b^3}$$
. $\frac{8x^2y}{a^3b} \div \frac{4x^3y^2}{a^2b^3} = \frac{8x^2y}{a^3b} \cdot \frac{a^2b^3}{4x^3y^2} = \frac{8^2x^{20}y}{a^{21}b} \cdot \frac{a^{20}b^{22}}{4_1x^{21}y^{21}} = \frac{2b^2}{axy}$

 $\frac{xy}{}$ + 4 complex fraction - a rational expression whose numerator and/or denominator contains a rational expression. Ex. $\frac{z}{6x-5v}$ is a complex fraction.

Adding and Subtracting Rational Expressions

$$\frac{a}{c} + \frac{b}{d} = \frac{a \cdot d}{c \cdot d} + \frac{b \cdot c}{c \cdot d} = \frac{ad + bc}{cd}$$

$$\frac{a}{c} + \frac{b}{d} = \frac{a \cdot d}{c \cdot d} + \frac{b \cdot c}{c \cdot d} = \frac{ad + bc}{cd}$$

Ex.
$$\frac{3x^2}{2y} \div \frac{3y}{5x} = \frac{3x^2}{2y} \cdot \frac{5x}{3y} = \frac{15x^3}{6y^2} = \frac{5x^3}{2y^2}$$

Solving Rational Equations and Inequalities

rational equation - an equation that contains one or more rational expressions

$$\frac{x-2}{x} < \frac{x}{x-3} \to \frac{x-2}{x} - \frac{x}{x-3} < 0 \to \frac{(x-2)(x-3) - x(x)}{x(x-3)} < 0 \to \frac{x^2 - 5x + 6 - x^2}{x(x-3)} < 0$$

$$x \neq 0, 3, \frac{6}{5}$$

Try $x = -1$	Try x=1	Try x=2	Try x=4
$\left \frac{-1-2}{-1} < \frac{-1}{-1-3} \right $	$\left \frac{1-2}{1} < \frac{1}{1-3} \right $	$\left \frac{2-2}{2} < \frac{2}{2-3} \right $	$\frac{4-2}{4} < \frac{4}{4-3}$
$\frac{-3}{-1} \not< \frac{-1}{-4}$	$\frac{-1}{1} < \frac{1}{-2}$	$\frac{0}{2} \not< \frac{2}{-1}$	$\frac{2}{4} < \frac{4}{1}$

$$0 < x < \frac{6}{5}$$
 and $x > 3$.