REFERENCE PAGE

Use the information below to answer questions on the Alabama High School Graduation Exam.

Some Abbreviations Used in Formulas

 $\mathbf{b_1,b_2}$ = bases of a trapezoid

 \mathbf{b} = base of a polygon

h = height or altitude

I = length

 $\mathbf{w} = \text{width}$

symbol for a right angle

 $m\angle$ = the measure of an angle

A = area

C = circumference

r = radius

d = diameter

 $\pi = 3.14$

P = perimeter

D = distance

 $\mathbf{M} = \text{midpoint}$

 $\mathbf{m} = \text{slope}$

S.A. = surface area

V = volume

B = area of the base

S = sum of interior angles of a convex polygon

n = number of sides of

a convex polygon

Formulas

Triangle: $\mathbf{A} = \frac{1}{2}\mathbf{bh}$

Parallelogram: A = bh

Rectangle: A = Iw

Trapezoid: $\mathbf{A} = \frac{1}{2}\mathbf{h}(\mathbf{b}_1 + \mathbf{b}_2)$

Circle: $\mathbf{C} = \pi \mathbf{d}$

 $C = 2\pi r$

 $A = \pi r^2$

Distance = rate • time

Interest = principal • rate • time

Distance Formula: **D** = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

Midpoint Formula: $\mathbf{M} = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$

Slope Formula: $\mathbf{m} = \frac{\mathbf{y}_2 - \mathbf{y}_1}{\mathbf{x}_2 - \mathbf{x}_4}$

Sum of Measures of Interior Angles of a Convex Polygon: $\mathbf{S} = 180(\mathbf{n} - 2)$

Quadratic Formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Pythagorean Theorem: $c^2 = a^2 + b^2$

	Surface Area	Volume
Rectangular Prism	S.A. = Ph + 2B or S.A. = 2(wh + lh + lw)	V = Bh or V = lwh
Cylinder	S.A. = $2\pi rh + 2\pi r^2$	$V = \pi r^2 h$

Forms of Equations

Standard form of an equation of a line: Ax + By = C

Slope-intercept form of an equation of a line: y = mx + b

Point-slope form of an equation of a line: $y - y_1 = \mathbf{m}(x - x_1)$