Pg. 1 of 2

# **Study Guide and Intervention**

### **Graphing Linear Equations**

**Identify Linear Equations** A linear equation is an equation that can be written in the form Ax + By = C. This is called the **standard form** of a linear equation.

Standard Form of a Linear Equation

Ax + By = C, where  $A \ge 0$ , A and B are not both zero, and A, B, and C are integers whose GCF is 1.

Example 1 Determine whether y = 6 - 3xis a linear equation. If so, write the equation in standard form.

First rewrite the equation so both variables are on the same side of the equation.

$$y=6-3x$$

$$y + 3x = 6 - 3x + 3x$$
 Add 3x to each side.

$$3x + y = 6$$

The equation is now in standard form, with A = 3, B = 1 and C = 6. This is a linear equation.

Example 2 Determine whether 3xy + y = 4 + 2x is a linear equation. If so, write the equation in standard form.

Since the term 3xy has two variables, the equation cannot be written in the form Ax + By = C. Therefore, this is not a linear equation.

Exercises

standard form.

HE NOT LINEARS CAN BE SHOWN ON THIS PAGE OTHERS MUST BE ON LOOSE LEAF. Determine whether each equation is a linear equation. If so, write the equation in

1. 
$$2x = 4y$$

**2.** 
$$6 + y = 8$$

3. 
$$4x - 2y = -1$$

4. 
$$3xy + 8 = 4y$$

**5.** 
$$3x - 4 = 12$$

**6.** 
$$y = x^2 + 7$$

7. 
$$v - 4x = 9$$

8. 
$$x + 8 = 0$$

**9.** 
$$-2x + 3 = 4y$$

**10.** 
$$2 + \frac{1}{2}x = y$$

11. 
$$\frac{1}{4}y = 12 - 4x$$

12. 
$$3xy - y = 8$$

$$13. 6x + 4y - 3 = 0$$

**14.** 
$$yx - 2 = 8$$

**15.** 
$$6a - 2b = 8 + b$$

16. 
$$\frac{1}{4}x - 12y = 1$$

17. 
$$3 + x + x^2 = 0$$

**18.** 
$$x^2 = 2xy$$



Pg. 2 of 2

## **Study Guide and Intervention**

### Slope and Direct Variation

**Direct Variation** A direct variation is described by an equation of the form y = kx, where  $k \neq 0$ . We say that y varies directly as x. In the equation y = kx, k is the **constant** of variation.

Example 1 Name the constant of variation for the equation. Then find the slope of the line that passes through the pair of points.



For  $y = \frac{1}{2}x$ , the constant of variation is  $\frac{1}{2}$ 

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
 Slope formula  
 $= \frac{1 - 0}{2 - 0}$   $(x_1, y_1) = (0, 0), (x_2, y_2) = (2, 1)$   
 $= \frac{1}{2}$  Simplify.

Example 2 Suppose y varies directly as x, and y = 30 when x = 5.

a.) Write a direct variation equation that relates x and y.

Find the value of k.

$$y = kx$$
 Direct variation equation

$$30 = k(5)$$
 Replace y with 30 and x with 5.

$$6 = k$$
 Divide each side by 5.

Therefore, the equation is 
$$y = 6x$$
.

b.) Use the direct variation equation to find x when y = 18.

$$y = 6x$$
 Direct variation equation

$$18 = 6x$$
 Replace y with 18.

$$3 = x$$
 Divide each side by 6.

Therefore, 
$$x = 3$$
 when  $y = 18$ .

The slope is  $\frac{1}{2}$ .

#### Exercises

ON LOCKELEAD

Name the constant of variation for each equation. Then determine the slope of the line that passes through each pair of points.







Write a direct variation equation that relates x to y. Assume that y varies directly as x. Then solve.

**4.** If 
$$y = 4$$
 when  $x = 2$ , find y when  $x = 16$ .

**5.** If 
$$y = 9$$
 when  $x = -3$ , find x when  $y = 6$ .

**6.** If 
$$y = -4.8$$
 when  $x = -1.6$ , find x when  $y = -24$ .

ANSWER BOTH PARTS !

**7.** If 
$$y = \frac{1}{4}$$
 when  $x = \frac{1}{8}$ , find x when  $y = \frac{3}{16}$ .

