STANDARD IV: The student will be able to apply formulas.

OBJECTIVE

2. Find the distance, midpoint, or slope of line segments when given two points.

ELIGIBLE CONTENT

- Radicals may be used.
- Radicals will be simplified.

- Lines graphed on the coordinate plane may be included.
- Determining the slope of a line given a line on the coordinate plane with two points labeled with their ordered pairs may be required.
- Determining the slope of a line or midpoint of a line segment given two points on a line on the coordinate plane without any coordinates labeled may be required.
- The formulas will be given in the problems.

SAMPLE ITEMS

The endpoints of $\overline{\mathrm{AB}}$ are $(2,5)$ and $(-6,9)$. What are the coordinates of the midpoint of $\overline{\mathrm{AB}}$?

Midpoint formula: $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
A $(-4,2)$
B $(-2,7)$
C $(4,7)$
D $(7,-2)$

2 What is the distance between $(4,-2)$
and $(4,-8)$?
Distance formula:
$D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
A $\sqrt{6}$
B $2 \sqrt{5}$
C 6
D 10

3 What is the slope of the line show n in the graph?

Slope formula: $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

A -4
B -1
C $-\frac{4}{3}$
D $-\frac{1}{3}$

4 What is the midpoint of segment VW shown in the graph?

Midpoint formula: $M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

A $\left(-\frac{7}{3}, 3\right)$
B $\left(-1, \frac{1}{2}\right)$
C $\left(\frac{1}{2},-1\right)$
D $\left(3,-\frac{7}{2}\right)$

5 What is the length of segment RS shown in the graph below?

Distance formula:
$D=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$

A $2 \sqrt{26}$
B $2 \sqrt{34}$
C 11
D 12

