\qquad

14-3 Study Guide

Trigonometric Identities

Simplify Expressions The simplified form of a trigonometric expression is written as a numerical value or in terms of a single trigonometric function, if possible. Any of the trigonometric identities on page 849 can be used to simplify expressions containing trigonometric functions.

Example 1 Simplify $\left(1-\cos ^{2} \theta\right) \sec \theta \cot \theta+\tan \theta \sec \theta \cos ^{2} \theta$.
$\left(1-\cos ^{2} \theta\right) \sec \theta \cot \theta+\tan \theta \sec \theta \cos ^{2} \theta=\sin ^{2} \theta \cdot \frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta} \cdot \frac{1}{\cos \theta} \cdot \cos ^{2} \theta$

$$
\begin{aligned}
& =\sin \theta+\sin \theta \\
& =2 \sin \theta
\end{aligned}
$$

Example 2 Simplify $\frac{\sec \theta \cdot \cot \theta}{1-\sin \theta}-\frac{\csc \theta}{1+\sin \theta}$.
$\frac{\sec \theta \cdot \cot \theta}{1-\sin \theta}-\frac{\csc \theta}{1+\sin \theta}=\frac{\frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta}}{1-\sin \theta}-\frac{\frac{1}{\sin \theta}}{1+\sin \theta}$
$=\frac{\frac{1}{\sin \theta}(1+\sin \theta)-\frac{1}{\sin \theta}(1-\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{\frac{1}{\sin \theta}+1-\frac{1}{\sin \theta}+1}{1-\sin ^{2} \theta}$
$=\frac{2}{\cos ^{2} \theta}$

Exercises

Simplify each expression.

1. $\frac{\tan \theta \cdot \csc \theta}{\sec \theta}$
2. $\frac{\sin \theta \cdot \cot \theta}{\sec ^{2} \theta-\tan ^{2} \theta}$
3. $\frac{\sin ^{2} \theta-\cot \theta \cdot \tan \theta}{\cot \theta \cdot \sin \theta}$
4. $\frac{\cos \theta}{\sec \theta-\tan \theta}$
5. $\frac{\tan \theta \cdot \cos \theta}{\sin \theta}+\cot \theta \cdot \sin \theta \cdot \tan \theta \cdot \csc \theta$
6. $\frac{\csc ^{2} \theta-\cot ^{2} \theta}{\tan \theta \cdot \cos \theta}$
7. $3 \tan \theta \cdot \cot \theta+4 \sin \theta \cdot \csc \theta+2 \cos \theta \cdot \sec \theta$
8. $\frac{1-\cos ^{2} \theta}{\tan \theta \cdot \sin \theta}$
\qquad
\qquad

Verifying Trigonometric Identities

Verify that each of the following is an identity.

1. $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta}=\sec ^{2} \theta$
2. $\frac{\cos ^{2} \theta}{1-\sin ^{2} \theta}=1$
3. $(1+\sin \theta)(1-\sin \theta)=\cos ^{2} \theta$
4. $\tan ^{4} \theta+2 \tan ^{2} \theta+1=\sec ^{4} \theta$
5. $\cos ^{2} \theta \cot ^{2} \theta=\cot ^{2} \theta-\cos ^{2} \theta$
6. $\left(\sin ^{2} \theta\right)\left(\csc ^{2} \theta+\sec ^{2} \theta\right)=\sec ^{2} \theta$

Bonus

Textbook Problem: Page 784 \#16.

